hydrocodone/acetaminophen (Rx)

Brand and Other Names:Vicodin, Lorcet, more...Hycet, Norco, Lortab Elixir, Anexsia, Vicodin ES, Vicodin HP, Xodol, Zamicet
  • Print

Dosing & Uses

AdultPediatric

Dosage Forms & Strengths

tablet: Schedule II

  • 2.5mg/325mg
  • 5mg/300mg, 5mg/325mg
  • 7.5mg/300mg, 7.5mg/325mg
  • 10mg/300mg, 10mg/325mg

oral solution/elixir: Schedule II

  • (7.5mg/325mg)/15mL
  • (10mg/300mg)/15mL, (10mg/325mg)/15mL

Moderate to Severe Pain

1-2 tablets (2.5-10 mg hydrocodone; 300-325 mg acetaminophen) PO q4-6hr PRN

Acetaminophen: Not to exceed 1 g/dose or 4 g/24 hr

Hydrocodone: Maximum daily dose should not exceed 60 mg/24 hr

Dosing Modifications

Hepatic impairment: Avoid chronic use or high doses of acetaminophen (ie, >4 g/day) in hepatic impairment

Dosing Consideration

Access to naloxone for opioid overdose

  • Assess need for naloxone upon initiating and renewing treatment
  • Consider prescribing naloxone
    • Based on patient’s risk factors for overdose (eg, concomitant use of CNS depressants, a history of opioid use disorder, prior opioid overdose); presence of risk factors should not prevent proper pain management
    • Household members (including children) or other close contacts at risk for accidental ingestion or overdose
  • Consult patients and caregivers on the following:
    • Availability of naloxone for emergency treatment of opioid overdose
    • Ways differ on how to obtain naloxone as permitted by individual state dispensing and prescribing requirements or guidelines (eg, by prescription, directly from a pharmacist, as part of a community-based program)

Dosage Forms & Strengths

tablet: Schedule II

  • 2.5mg/325mg,
  • 5mg/300mg, 5mg/325mg
  • 7.5mg/300mg, 7.5mg/325mg
  • 10mg/300mg, 10mg/325mg

oral solution/elixir: Schedule II

  • (7.5mg/325mg)/15mL, (7.5mg/500mg)/15mL
  • (10mg/300mg)/15mL, (10mg/325mg)/15mL

Moderate to Severe Pain

<2 years: Safety and efficacy not established

2-12 years: 0.135 mg/kg hydrocodone PO q4-6hr PRN  

>12 years: 1-2 tablets (2.5-10 mg hydrocodone; 300-325 mg acetaminophen) PO q4-6hr PRN

Next:

Interactions

Interaction Checker

and hydrocodone/acetaminophen

No Results

     activity indicator 
    No Interactions Found
    Interactions Found

    Contraindicated

      Serious - Use Alternative

        Significant - Monitor Closely

          Minor

            All Interactions Sort By:
             activity indicator 

            Contraindicated (1)

            • alvimopan

              alvimopan, hydrocodone. receptor binding competition. Contraindicated. Alvimopan is contraindicated in opioid tolerant patients (ie, those who have taken therapeutic doses of opioids for >7 consecutive days immediately prior to taking alvimopan). Patients recently exposed to opioids are expected to be more sensitive to the effects of alvimopan and therefore may experience abdominal pain, nausea and vomiting, and diarrhea. No significant interaction is expected with concurrent use of opioid analgesics and alvimopan in patients who received opioid analgesics for 7 or fewer consecutive days prior to alvimopan.

            Serious - Use Alternative (94)

            • alfentanil

              hydrocodone, alfentanil. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • alprazolam

              hydrocodone, alprazolam. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • amobarbital

              hydrocodone, amobarbital. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

              amobarbital will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

            • arbaclofen

              hydrocodone, arbaclofen. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • aripiprazole

              hydrocodone, aripiprazole. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • asenapine

              hydrocodone, asenapine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • atracurium

              hydrocodone, atracurium. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • baclofen

              hydrocodone, baclofen. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • benzhydrocodone/acetaminophen

              benzhydrocodone/acetaminophen, hydrocodone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • bremelanotide

              bremelanotide will decrease the level or effect of hydrocodone by Other (see comment). Avoid or Use Alternate Drug. Bremelanotide may slow gastric emptying and potentially reduces the rate and extent of absorption of concomitantly administered oral medications. Avoid use when taking any oral drug that is dependent on threshold concentrations for efficacy. Interactions listed are representative examples and do not include all possible clinical examples.

            • buprenorphine

              buprenorphine decreases effects of hydrocodone by pharmacodynamic antagonism. Avoid or Use Alternate Drug. Mixed opioid agonists/antagonists and partial opioid agonists may reduce the analgesic effect of hydrocodone and/or precipitate withdrawal symptoms in opioid tolerant patients. .

              hydrocodone, buprenorphine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • buprenorphine buccal

              buprenorphine buccal decreases effects of hydrocodone by pharmacodynamic antagonism. Avoid or Use Alternate Drug. Mixed opioid agonists/antagonists and partial opioid agonists may reduce the analgesic effect of hydrocodone and/or precipitate withdrawal symptoms in opioid tolerant patients. .

            • buprenorphine subdermal implant

              buprenorphine subdermal implant decreases effects of hydrocodone by pharmacodynamic antagonism. Avoid or Use Alternate Drug. Mixed opioid agonists/antagonists and partial opioid agonists may reduce the analgesic effect of hydrocodone and/or precipitate withdrawal symptoms in opioid tolerant patients. .

            • buprenorphine transdermal

              buprenorphine transdermal decreases effects of hydrocodone by pharmacodynamic antagonism. Avoid or Use Alternate Drug. Mixed opioid agonists/antagonists and partial opioid agonists may reduce the analgesic effect of hydrocodone and/or precipitate withdrawal symptoms in opioid tolerant patients. .

              hydrocodone, buprenorphine transdermal. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • buprenorphine, long-acting injection

              buprenorphine, long-acting injection decreases effects of hydrocodone by pharmacodynamic antagonism. Avoid or Use Alternate Drug. Mixed opioid agonists/antagonists and partial opioid agonists may reduce the analgesic effect of hydrocodone and/or precipitate withdrawal symptoms in opioid tolerant patients. .

            • buspirone

              hydrocodone, buspirone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • butabarbital

              hydrocodone, butabarbital. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • butalbital

              hydrocodone, butalbital. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • butorphanol

              butorphanol decreases effects of hydrocodone by pharmacodynamic antagonism. Avoid or Use Alternate Drug. Mixed opioid agonists/antagonists and partial opioid agonists may reduce the analgesic effect of hydrocodone and/or precipitate withdrawal symptoms in opioid tolerant patients.

              hydrocodone, butorphanol. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • calcium/magnesium/potassium/sodium oxybates

              hydrocodone, calcium/magnesium/potassium/sodium oxybates. Either increases levels of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • cariprazine

              hydrocodone, cariprazine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • carisoprodol

              hydrocodone, carisoprodol. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • chloral hydrate

              hydrocodone, chloral hydrate. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • chlordiazepoxide

              hydrocodone, chlordiazepoxide. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • chlorpromazine

              hydrocodone, chlorpromazine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation. Increased risk of hypotension if ability to maintain blood pressure has been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (eg, phenothiazines or general anesthetics).

            • chlorzoxazone

              hydrocodone, chlorzoxazone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • cisatracurium

              hydrocodone, cisatracurium. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • clonazepam

              hydrocodone, clonazepam. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • clonidine

              clonidine, hydrocodone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration enhances CNS depressant effects.

            • clorazepate

              hydrocodone, clorazepate. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • clozapine

              hydrocodone, clozapine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • codeine

              hydrocodone, codeine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • cyclobenzaprine

              hydrocodone, cyclobenzaprine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • dantrolene

              hydrocodone, dantrolene. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • desflurane

              hydrocodone, desflurane. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation. Increased risk of hypotension if ability to maintain blood pressure has been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (eg, phenothiazines or general anesthetics).

            • dexmedetomidine

              hydrocodone, dexmedetomidine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • diazepam

              hydrocodone, diazepam. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • diazepam intranasal

              diazepam intranasal, hydrocodone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • doxylamine

              hydrocodone, doxylamine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • estazolam

              hydrocodone, estazolam. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • eszopiclone

              hydrocodone, eszopiclone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • ethanol

              hydrocodone, ethanol. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • etomidate

              hydrocodone, etomidate. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation. Increased risk of hypotension if ability to maintain blood pressure has been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (eg, phenothiazines or general anesthetics).

            • fentanyl

              hydrocodone, fentanyl. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • fentanyl intranasal

              hydrocodone, fentanyl intranasal. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • fentanyl transdermal

              hydrocodone, fentanyl transdermal. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • fentanyl transmucosal

              hydrocodone, fentanyl transmucosal. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • fexinidazole

              fexinidazole will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Fexinidazole inhibits CYP3A4. Coadministration may increase risk for adverse effects of CYP3A4 substrates.

            • fluphenazine

              hydrocodone, fluphenazine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation. Increased risk of hypotension if ability to maintain blood pressure has been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (eg, phenothiazines or general anesthetics).

            • flurazepam

              hydrocodone, flurazepam. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • haloperidol

              hydrocodone, haloperidol. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • hydromorphone

              hydrocodone, hydromorphone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • iloperidone

              hydrocodone, iloperidone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • isocarboxazid

              isocarboxazid increases toxicity of hydrocodone by serotonin levels. Avoid or Use Alternate Drug. MAOI interactions with opioids may manifest as serotonin syndrome or opioid toxicity (eg, respiratory depression, coma). Opioids are not recommended for patients taking MAOIs or within 14 days of stopping MAOIs. If urgent opioid treatment needed, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.

            • isoflurane

              hydrocodone, isoflurane. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation. Increased risk of hypotension if ability to maintain blood pressure has been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (eg, phenothiazines or general anesthetics).

            • ivosidenib

              ivosidenib will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of sensitive CYP3A4 substrates with ivosidenib or replace with alternate therapies. If coadministration is unavoidable, monitor patients for loss of therapeutic effect of these drugs.

            • ketamine

              hydrocodone, ketamine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation. Increased risk of hypotension if ability to maintain blood pressure has been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (eg, phenothiazines or general anesthetics).

            • levorphanol

              hydrocodone, levorphanol. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • linezolid

              linezolid increases toxicity of hydrocodone by serotonin levels. Avoid or Use Alternate Drug. MAOI interactions with opioids may manifest as serotonin syndrome or opioid toxicity (eg, respiratory depression, coma). Opioids are not recommended for patients taking MAOIs or within 14 days of stopping MAOIs. If urgent opioid treatment needed, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. If linezolid must be administered, discontinue serotonergic drug immediately and monitor for CNS toxicity. Serotonergic therapy may be resumed 24 hours after last linezolid dose or after 2 weeks of monitoring, whichever comes first.

            • lonafarnib

              acetaminophen will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.

            • lorazepam

              hydrocodone, lorazepam. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • loxapine

              hydrocodone, loxapine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • loxapine inhaled

              hydrocodone, loxapine inhaled. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • lurasidone

              hydrocodone, lurasidone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • meperidine

              hydrocodone, meperidine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • meprobamate

              hydrocodone, meprobamate. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • metaxalone

              hydrocodone, metaxalone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • methadone

              hydrocodone, methadone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • methocarbamol

              hydrocodone, methocarbamol. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • methohexital

              hydrocodone, methohexital. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation. Increased risk of hypotension if ability to maintain blood pressure has been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (eg, phenothiazines or general anesthetics).

            • methylene blue

              methylene blue increases toxicity of hydrocodone by serotonin levels. Avoid or Use Alternate Drug. MAOI interactions with opioids may manifest as serotonin syndrome or opioid toxicity (eg, respiratory depression, coma). Opioids are not recommended for patients taking MAOIs or within 14 days of stopping MAOIs. If urgent opioid treatment needed, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. If methylene blue must be administered, discontinue serotonergic drug immediately and monitor for CNS toxicity. Serotonergic therapy may be resumed 24 hours after last methylene blue dose or after 2 weeks of monitoring, whichever comes first.

            • metoclopramide intranasal

              hydrocodone, metoclopramide intranasal. Either increases effects of the other by Other (see comment). Avoid or Use Alternate Drug. Comment: Avoid use of metoclopramide intranasal or interacting drug, depending on importance of drug to patient.

            • midazolam

              hydrocodone, midazolam. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • molindone

              hydrocodone, molindone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • morphine

              hydrocodone, morphine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • nalbuphine

              nalbuphine decreases effects of hydrocodone by pharmacodynamic antagonism. Avoid or Use Alternate Drug. Mixed opioid agonists/antagonists and partial opioid agonists may reduce the analgesic effect of hydrocodone and/or precipitate withdrawal symptoms in opioid tolerant patients.

              hydrocodone, nalbuphine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • olanzapine

              hydrocodone, olanzapine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • orphenadrine

              hydrocodone, orphenadrine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • oxazepam

              hydrocodone, oxazepam. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • oxycodone

              hydrocodone, oxycodone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • oxymorphone

              hydrocodone, oxymorphone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • ozanimod

              ozanimod and hydrocodone both increase sympathetic (adrenergic) effects, including increased blood pressure and heart rate. Avoid or Use Alternate Drug. Because the active metabolite of ozanimod inhibits MAO-B in vitro, there is a potential for serious adverse reactions, including hypertensive crisis. Therefore, coadministration of ozanimod with drugs that can increase norepinephrine or serotonin is not recommended. Monitor for hypertension with concomitant use.

            • paliperidone

              hydrocodone, paliperidone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • pancuronium

              hydrocodone, pancuronium. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • pentazocine

              pentazocine decreases effects of hydrocodone by pharmacodynamic antagonism. Avoid or Use Alternate Drug. Mixed opioid agonists/antagonists and partial opioid agonists may reduce the analgesic effect of hydrocodone and/or precipitate withdrawal symptoms in opioid tolerant patients.

              hydrocodone, pentazocine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • pentobarbital

              hydrocodone, pentobarbital. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • perphenazine

              hydrocodone, perphenazine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation. Increased risk of hypotension if ability to maintain blood pressure has been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (eg, phenothiazines or general anesthetics).

            • pexidartinib

              acetaminophen and pexidartinib both increase Other (see comment). Avoid or Use Alternate Drug. Pexidartinib can cause hepatotoxicity. Avoid coadministration of pexidartinib with other products know to cause hepatoxicity.

            • phenelzine

              phenelzine increases toxicity of hydrocodone by serotonin levels. Avoid or Use Alternate Drug. MAOI interactions with opioids may manifest as serotonin syndrome or opioid toxicity (eg, respiratory depression, coma). Opioids are not recommended for patients taking MAOIs or within 14 days of stopping MAOIs. If urgent opioid treatment needed, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.

            • phenobarbital

              hydrocodone, phenobarbital. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • pimavanserin

              hydrocodone, pimavanserin. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • pimozide

              hydrocodone, pimozide. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • pretomanid

              acetaminophen, pretomanid. Either increases toxicity of the other by Other (see comment). Avoid or Use Alternate Drug. Comment: Pretomanid regimen associated with hepatotoxicity. Avoid alcohol and hepatotoxic agents, including herbal supplements and drugs other than bedaquiline and linezolid.

            • primidone

              hydrocodone, primidone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            Monitor Closely (154)

            • almotriptan

              hydrocodone, almotriptan. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • alosetron

              hydrocodone, alosetron. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • amiodarone

              amiodarone will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • amitriptyline

              hydrocodone, amitriptyline. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • amoxapine

              hydrocodone, amoxapine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • amphetamine

              hydrocodone, amphetamine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • apalutamide

              apalutamide will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

              apalutamide will decrease the level or effect of acetaminophen by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.

            • artemether/lumefantrine

              artemether/lumefantrine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • avapritinib

              acetaminophen will increase the level or effect of avapritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • asenapine

              asenapine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • atazanavir

              atazanavir will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • axitinib

              acetaminophen increases levels of axitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • belzutifan

              belzutifan will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. If unable to avoid coadministration of belzutifan with sensitive CYP3A4 substrates, consider increasing the sensitive CYP3A4 substrate dose in accordance with its prescribing information.

            • bosentan

              bosentan will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • brexanolone

              brexanolone, hydrocodone. Either increases toxicity of the other by sedation. Use Caution/Monitor.

            • bupivacaine implant

              acetaminophen, bupivacaine implant. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: Local anesthetics may increase the risk of developing methemoglobinemia when concurrently exposed to drugs that also cause methemoglobinemia.

            • bupropion

              bupropion will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

              hydrocodone, bupropion. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • busulfan

              acetaminophen increases levels of busulfan by decreasing metabolism. Use Caution/Monitor. Use of acetaminophen prior to (< 72 hours) or concurrently with busulfan may result in decreased clearance of busulfan due to acetaminophen-induced decreases in glutathione levels.

            • carbamazepine

              carbamazepine will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • celecoxib

              celecoxib will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • cenobamate

              cenobamate will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Increase dose of CYP3A4 substrate, as needed, when coadministered with cenobamate.

            • chloramphenicol

              chloramphenicol will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • chloroquine

              chloroquine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • cimetidine

              cimetidine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • citalopram

              hydrocodone, citalopram. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • clarithromycin

              clarithromycin will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • clobazam

              hydrocodone, clobazam. Other (see comment). Use Caution/Monitor. Comment: Concomitant administration can increase the potential for CNS effects (e.g., increased sedation or respiratory depression).

            • clomipramine

              hydrocodone, clomipramine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • cobicistat

              cobicistat will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • conivaptan

              conivaptan will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • dabrafenib

              dabrafenib will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • dapsone topical

              acetaminophen increases toxicity of dapsone topical by altering metabolism. Modify Therapy/Monitor Closely. May induce methemoglobinemia .

            • darifenacin

              darifenacin will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • darunavir

              darunavir will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • desipramine

              hydrocodone, desipramine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • desvenlafaxine

              desvenlafaxine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

              hydrocodone, desvenlafaxine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • dexamethasone

              dexamethasone will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • dextroamphetamine

              hydrocodone, dextroamphetamine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • dichlorphenamide

              dichlorphenamide and hydrocodone both decrease serum potassium. Use Caution/Monitor.

            • diphenhydramine

              diphenhydramine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • doxepin

              hydrocodone, doxepin. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • dronedarone

              dronedarone will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • duloxetine

              duloxetine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

              hydrocodone, duloxetine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • efavirenz

              efavirenz will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • elagolix

              elagolix decreases levels of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Elagolix is a weak-to-moderate CYP3A4 inducer. Monitor CYP3A substrates if coadministered. Consider increasing CYP3A substrate dose if needed.

            • eletriptan

              hydrocodone, eletriptan. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • eltrombopag

              eltrombopag increases levels of acetaminophen by decreasing metabolism. Use Caution/Monitor. UGT inhibition; significance of interaction unclear.

            • elvitegravir/cobicistat/emtricitabine/tenofovir DF

              elvitegravir/cobicistat/emtricitabine/tenofovir DF will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • encorafenib

              encorafenib, hydrocodone. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Encorafenib both inhibits and induces CYP3A4 at clinically relevant plasma concentrations. Coadministration of encorafenib with sensitive CYP3A4 substrates may result in increased toxicity or decreased efficacy of these agents.

            • enzalutamide

              enzalutamide will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • escitalopram

              hydrocodone, escitalopram. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • esketamine intranasal

              esketamine intranasal, hydrocodone. Either increases toxicity of the other by sedation. Modify Therapy/Monitor Closely.

            • eslicarbazepine acetate

              eslicarbazepine acetate will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • etravirine

              etravirine will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • exenatide injectable solution

              exenatide injectable solution will decrease the level or effect of acetaminophen by unspecified interaction mechanism. Use Caution/Monitor. To avoid potential interaction, give acetaminophen at least 1 hour before or 4 hours after exenatide injection.

            • exenatide injectable suspension

              exenatide injectable suspension will decrease the level or effect of acetaminophen by unspecified interaction mechanism. Use Caution/Monitor. To avoid potential interaction, give acetaminophen at least 1 hour before or 4 hours after exenatide injection.

            • fedratinib

              fedratinib will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Adjust dose of drugs that are CYP3A4 substrates as necessary.

            • finerenone

              acetaminophen will increase the level or effect of finerenone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Monitor serum potassium during initiation and dosage adjustment of either finererone or moderate CYP3A4 inhibitors. Adjust finererone dosage as needed.

            • flibanserin

              hydrocodone, flibanserin. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

              acetaminophen will increase the level or effect of flibanserin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Increased flibanserin adverse effects may occur if coadministered with multiple weak CYP3A4 inhibitors.

            • fluoxetine

              hydrocodone, fluoxetine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • imatinib

              imatinib decreases levels of acetaminophen by decreasing hepatic clearance. Modify Therapy/Monitor Closely. In vitro, imatinib was found to inhibit acetaminophen O-glucuronidation (Ki value of 58.5 micro-M) at therapeutic levels; avoid chronic acetaminophen therapy with imatinib; if occasional acetaminophen administered, do not exceed 1300 mg/day.

            • fluvoxamine

              fluvoxamine and hydrocodone both increase serotonin levels. Use Caution/Monitor. If concomitant use warranted, carfully observe patient, particularly during treatment initiation and dose adjustment

            • fosamprenavir

              fosamprenavir will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • fosphenytoin

              fosphenytoin will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • frovatriptan

              hydrocodone, frovatriptan. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • gabapentin

              gabapentin, hydrocodone. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of CNS depressants can result in serious, life-threatening, and fatal respiratory depression. Use lowest dose possible and monitor for respiratory depression and sedation.

            • gabapentin enacarbil

              gabapentin enacarbil, hydrocodone. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of CNS depressants can result in serious, life-threatening, and fatal respiratory depression. Use lowest dose possible and monitor for respiratory depression and sedation.

            • grapefruit

              grapefruit will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • haloperidol

              haloperidol will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • idelalisib

              idelalisib will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • imatinib

              imatinib will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

              imatinib will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • imipramine

              hydrocodone, imipramine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • indinavir

              indinavir will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • isoniazid

              isoniazid will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

              isoniazid will increase the level or effect of acetaminophen by affecting hepatic enzyme CYP2E1 metabolism. Use Caution/Monitor.

            • istradefylline

              istradefylline will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Istradefylline 40 mg/day increased peak levels and AUC of CYP3A4 substrates in clinical trials. This effect was not observed with istradefylline 20 mg/day. Consider dose reduction of sensitive CYP3A4 substrates.

            • ivacaftor

              acetaminophen increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .

            • ketoconazole

              ketoconazole will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • lasmiditan

              lasmiditan, hydrocodone. Either increases effects of the other by sedation. Use Caution/Monitor. Coadministration of lasmiditan and other CNS depressant drugs, including alcohol have not been evaluated in clinical studies. Lasmiditan may cause sedation, as well as other cognitive and/or neuropsychiatric adverse reactions.

            • lemborexant

              acetaminophen will increase the level or effect of lemborexant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Lower nightly dose of lemborexant recommended if coadministered with weak CYP3A4 inhibitors. See drug monograph for specific dosage modification.

              lemborexant, hydrocodone. Either increases effects of the other by sedation. Modify Therapy/Monitor Closely. Dosage adjustment may be necessary if lemborexant is coadministered with other CNS depressants because of potentially additive effects.

            • letermovir

              letermovir increases levels of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression.

            • levonorgestrel oral/ethinylestradiol/ferrous bisglycinate

              levonorgestrel oral/ethinylestradiol/ferrous bisglycinate will decrease the level or effect of acetaminophen by unknown mechanism. Use Caution/Monitor.

              acetaminophen increases levels of levonorgestrel oral/ethinylestradiol/ferrous bisglycinate by decreasing hepatic clearance. Use Caution/Monitor. Coadministration of ascorbic acid and certain combined hormonal contraceptives (CHCs) containing EE may increase plasma EE concentrations, possibly by inhibition of conjugation.

            • levomilnacipran

              hydrocodone, levomilnacipran. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • lisdexamfetamine

              hydrocodone, lisdexamfetamine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • lixisenatide

              lixisenatide will decrease the level or effect of acetaminophen by inhibition of GI absorption. Applies only to oral form of both agents. Modify Therapy/Monitor Closely. GLP1 agonists delay gastric emptying, which may affect absorption of concomitantly administered oral medications. No effects on acetaminophen Cmax and Tmax were observed when acetaminophen was administered 1 hr before lixisenatide. When administered 1 or 4 hr after lixisenatide, acetaminophen Cmax was decreased by 29% and 31% respectively and median Tmax was delayed by 2 and 1.75 hr, respectively.

            • lomitapide

              acetaminophen increases levels of lomitapide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Lomitapide dose should not exceed 30 mg/day.

            • lopinavir

              lopinavir will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • lorcaserin

              hydrocodone, lorcaserin. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • lorlatinib

              lorlatinib will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • lumefantrine

              lumefantrine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • lurasidone

              lurasidone, hydrocodone. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: Potential for increased CNS depressant effects when used concurrently; monitor for increased adverse effects and toxicity.

            • maprotiline

              hydrocodone, maprotiline. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • maraviroc

              maraviroc will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • marijuana

              marijuana will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • methamphetamine

              hydrocodone, methamphetamine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • methylphenidate

              hydrocodone, methylphenidate. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • midazolam intranasal

              acetaminophen will increase the level or effect of midazolam intranasal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of mild CYP3A4 inhibitors with midazolam intranasal may cause higher midazolam systemic exposure, which may prolong sedation.

              midazolam intranasal, hydrocodone. Either increases toxicity of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Concomitant use of barbiturates, alcohol, or other CNS depressants may increase the risk of hypoventilation, airway obstruction, desaturation, or apnea and may contribute to profound and/or prolonged drug effect.

            • mifepristone

              mifepristone will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • mipomersen

              mipomersen, acetaminophen. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: Both drugs have potential to increase hepatic enzymes; monitor LFTs.

            • milnacipran

              hydrocodone, milnacipran. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • mirtazapine

              hydrocodone, mirtazapine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • mitotane

              mitotane will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • nafcillin

              nafcillin will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • naratriptan

              hydrocodone, naratriptan. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • nefazodone

              nefazodone will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

              hydrocodone, nefazodone. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • nelfinavir

              nelfinavir will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • nevirapine

              nevirapine will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • nicardipine

              nicardipine will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • nilotinib

              nilotinib will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • nortriptyline

              hydrocodone, nortriptyline. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • oliceridine

              oliceridine, hydrocodone. Either increases toxicity of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • oxcarbazepine

              oxcarbazepine will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • parecoxib

              parecoxib will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • paroxetine

              paroxetine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

              hydrocodone, paroxetine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • pegvisomant

              hydrocodone will decrease the level or effect of pegvisomant by unknown mechanism. Use Caution/Monitor. Prescribing information describes higher pegvisomant doses are required to control insulinlike growth factor levels when coadministered with opioids.

            • pentobarbital

              pentobarbital will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • perphenazine

              perphenazine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • phenobarbital

              phenobarbital will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • phenytoin

              phenytoin will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression.

            • posaconazole

              posaconazole will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • pregabalin

              pregabalin, hydrocodone. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of CNS depressants can result in serious, life-threatening, and fatal respiratory depression. Use lowest dose possible and monitor for respiratory depression and sedation.

            • primidone

              primidone will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • propafenone

              propafenone will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • protriptyline

              hydrocodone, protriptyline. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • quinacrine

              quinacrine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • quinidine

              quinidine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • ranolazine

              ranolazine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • remimazolam

              remimazolam, hydrocodone. Either increases toxicity of the other by sedation. Modify Therapy/Monitor Closely. Coadministration may result in profound sedation, respiratory depression, coma, and/or death. Continuously monitor vital signs during sedation and recovery period if coadministered. Carefully titrate remimazolam dose if administered with opioid analgesics and/or sedative/hypnotics.

            • ribociclib

              ribociclib will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • rifabutin

              rifabutin will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • rifampin

              rifampin will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • rifapentine

              rifapentine will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

            • ritonavir

              ritonavir will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

              ritonavir will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • rizatriptan

              hydrocodone, rizatriptan. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • rucaparib

              rucaparib will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust dosage of CYP3A4 substrates, if clinically indicated.

            • safinamide

              hydrocodone, safinamide. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • saquinavir

              saquinavir will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • secobarbital

              secobarbital will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. May also enhance CNS depressant effect of hydrocodone

            • sertraline

              sertraline will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

              hydrocodone, sertraline. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • St John's Wort

              St John's Wort will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression

              hydrocodone, St John's Wort. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • stiripentol

              stiripentol, hydrocodone. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Stiripentol is a CYP3A4 inhibitor and inducer. Monitor CYP3A4 substrates coadministered with stiripentol for increased or decreased effects. CYP3A4 substrates may require dosage adjustment.

              stiripentol, hydrocodone. Either increases effects of the other by sedation. Use Caution/Monitor. Concomitant use stiripentol with other CNS depressants, including alcohol, may increase the risk of sedation and somnolence.

            • sumatriptan

              hydrocodone, sumatriptan. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • sumatriptan intranasal

              hydrocodone, sumatriptan intranasal. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • tazemetostat

              tazemetostat will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              acetaminophen will increase the level or effect of tazemetostat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • tecovirimat

              tecovirimat will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Tecovirimat is a weak CYP3A4 inducer. Monitor sensitive CYP3A4 substrates for effectiveness if coadministered.

            • tetracaine

              tetracaine, acetaminophen. Other (see comment). Use Caution/Monitor. Comment: Monitor for signs of methemoglobinemia when methemoglobin-inducing drugs are coadministered.

            • thioridazine

              thioridazine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

            • tinidazole

              acetaminophen will increase the level or effect of tinidazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • tipranavir

              tipranavir will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

              tipranavir will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • trazodone

              hydrocodone, trazodone. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • trimipramine

              hydrocodone, trimipramine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • venlafaxine

              venlafaxine will increase the level or effect of hydrocodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Hydromorphone (<3% of the circulating parent hydrocodone) is mainly formed by CYP2D6 mediated O-demethylation of hydrocodone. Hydromorphone may contribute to the total analgesic effect of hydrocodone.

              hydrocodone, venlafaxine. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            • voriconazole

              voriconazole will increase the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with CYP3A4 inhibitors may increase hydrocodone plasma concentrations and can result in potentially fatal respiratory depression

            • warfarin

              acetaminophen increases effects of warfarin by unknown mechanism. Use Caution/Monitor.

            • zolmitriptan

              hydrocodone, zolmitriptan. Either increases effects of the other by serotonin levels. Use Caution/Monitor. Coadministration of drugs that affect the serotonergic neurotransmitter system may result in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment.

            Minor (51)

            • acetazolamide

              acetazolamide decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • albiglutide

              albiglutide decreases levels of acetaminophen by unspecified interaction mechanism. Minor/Significance Unknown.

            • antithrombin alfa

              acetaminophen increases effects of antithrombin alfa by unknown mechanism. Minor/Significance Unknown.

            • antithrombin III

              acetaminophen increases effects of antithrombin III by unknown mechanism. Minor/Significance Unknown.

            • argatroban

              acetaminophen increases effects of argatroban by unknown mechanism. Minor/Significance Unknown.

            • bemiparin

              acetaminophen increases effects of bemiparin by unknown mechanism. Minor/Significance Unknown.

            • bivalirudin

              acetaminophen increases effects of bivalirudin by unknown mechanism. Minor/Significance Unknown.

            • carbamazepine

              carbamazepine decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • cholestyramine

              cholestyramine decreases levels of acetaminophen by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.

            • clonazepam

              clonazepam decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • colestipol

              colestipol decreases levels of acetaminophen by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.

            • dalteparin

              acetaminophen increases effects of dalteparin by unknown mechanism. Minor/Significance Unknown.

            • diazepam

              diazepam decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • disulfiram

              disulfiram will increase the level or effect of acetaminophen by affecting hepatic enzyme CYP2E1 metabolism. Minor/Significance Unknown.

            • enoxaparin

              acetaminophen increases effects of enoxaparin by unknown mechanism. Minor/Significance Unknown.

            • ethanol

              ethanol will decrease the level or effect of acetaminophen by affecting hepatic enzyme CYP2E1 metabolism. Minor/Significance Unknown.

              ethanol increases toxicity of acetaminophen by decreasing metabolism. Minor/Significance Unknown.

            • ethosuximide

              ethosuximide decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • felbamate

              felbamate decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • fondaparinux

              acetaminophen increases effects of fondaparinux by unknown mechanism. Minor/Significance Unknown.

            • fosphenytoin

              fosphenytoin decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • gabapentin

              gabapentin decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • gabapentin enacarbil

              gabapentin enacarbil decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • green tea

              green tea increases effects of acetaminophen by pharmacodynamic synergism. Minor/Significance Unknown. (Theoretical, due to caffeine content).

            • heparin

              acetaminophen increases effects of heparin by unknown mechanism. Minor/Significance Unknown.

            • isoniazid

              isoniazid increases toxicity of acetaminophen by unknown mechanism. Minor/Significance Unknown.

            • lacosamide

              lacosamide decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • lamotrigine

              lamotrigine decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • levetiracetam

              levetiracetam decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • liraglutide

              liraglutide decreases levels of acetaminophen by unspecified interaction mechanism. Minor/Significance Unknown.

            • lorazepam

              lorazepam decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • methsuximide

              methsuximide decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • metoclopramide

              metoclopramide increases levels of acetaminophen by enhancing GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.

            • metronidazole

              metronidazole will increase the level or effect of acetaminophen by affecting hepatic enzyme CYP2E1 metabolism. Minor/Significance Unknown.

            • oxcarbazepine

              oxcarbazepine decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • oxybutynin

              oxybutynin decreases levels of acetaminophen by unspecified interaction mechanism. Minor/Significance Unknown.

            • oxybutynin topical

              oxybutynin topical decreases levels of acetaminophen by unspecified interaction mechanism. Minor/Significance Unknown.

            • oxybutynin transdermal

              oxybutynin transdermal decreases levels of acetaminophen by unspecified interaction mechanism. Minor/Significance Unknown.

            • phenindione

              acetaminophen increases effects of phenindione by unknown mechanism. Minor/Significance Unknown.

            • phenobarbital

              phenobarbital decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • phenytoin

              phenytoin decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • primidone

              primidone decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • protamine

              acetaminophen increases effects of protamine by unknown mechanism. Minor/Significance Unknown.

            • rifabutin

              rifabutin decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • rifampin

              rifampin decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • rufinamide

              rufinamide decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • ruxolitinib

              acetaminophen will increase the level or effect of ruxolitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • tiagabine

              tiagabine decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • topiramate

              topiramate decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • valproic acid

              valproic acid decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism incr levels of hepatotoxic metabolites.

            • ziconotide

              ziconotide, hydrocodone. Mechanism: unspecified interaction mechanism. Minor/Significance Unknown. Additive decreased GI motility. Additive analgesia. Ziconotide does NOT potentiate opioid induced respiratory depression.

            • zonisamide

              zonisamide decreases levels of acetaminophen by increasing metabolism. Minor/Significance Unknown. Enhanced metabolism increase levels of hepatotoxic metabolites.

            Previous
            Next:

            Adverse Effects

            Frequency Not Defined

            Biliary tract spasm

            Hallucinations

            Circulatory collapse

            Histamine release

            Physical and psychological dependence with prolonged use

            Urinary tract spasm

            Bradycardia

            Cardiac arrest

            Confusion

            Decreased urination

            Dizziness

            Drowsiness

            Dyspnea

            Fatigue

            Hypotension

            Coma

            Dysphoria

            Euphoria

            Lethargy

            Lightheadedness

            Mood changes

            Stupor

            Mental clouding

            Nausea

            Sedation

            Vomiting

            Weakness

            Peptic ulcer

            Agranulocytosis

            Hemolytic anemia

            Hepatic necrosis

            Respiratory depression

            Previous
            Next:

            Warnings

            Black Box Warnings

            Addiction, abuse, and misuse

            • Long-acting hydrocodone exposes patients and other users to the risks of opioid addiction, abuse, and misuse, which can lead to overdose and death
            • Assess each patient’s risk prior to prescribing, and monitor all patients regularly for the development of these behaviors or conditions

            Life-threatening respiratory depression

            • Serious, life-threatening, or fatal respiratory depression may occur
            • Monitor for respiratory depression, especially during initiation or following a dose increase
            • Instruct patients to swallow capsules/tablets whole; crushing, chewing, or dissolving the extended-release dosage forms can cause rapid release and absorption of a potentially fatal dose of hydrocodone

            Accidental exposure

            • Accidental consumption of even 1 dose of hydrocodone, especially by children, can result in a fatal overdose of hydrocodone

            Neonatal opioid withdrawal syndrome

            • For patients who require opioid therapy while pregnant, be aware that infants may require treatment for neonatal opioid withdrawal syndrome
            • Prolonged maternal use during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening and requires management according to protocols developed by neonatology experts

            Interaction with CNS depressants

            • Concomitant use of opioids with benzodiazepines or other CNS depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death
            • Reserve concomitant prescribing for use in patients for whom alternative treatment options are inadequate Limit dosages and durations to the minimum required; and follow patients for signs and symptoms of respiratory depression and sedation
            • Coingestion with alcohol may increase hydrocodone plasma levels and result in a potentially fatal overdose (alters release of drug from capsule)

            Interaction with CYP3A4 inhibitors

            • Initiation of CYP3A4 inhibitors (or discontinuation of CYP3A4 inducers) can result in a fatal overdose of hydrocodone from hydrocodone ER

            Contains acetaminophen

            Hepatotoxicity may occur with acetaminophen doses that exceed 4 g/day; take into account all acetaminophen-containing products the patient is taking, including PRN doses and OTC products

            Acetaminophen has been associated with cases of acute liver failure, at times resulting in liver transplantation or death

            New dosage limit allows no more than 325 mg/dosage unit for prescription medications that contain acetaminophen

            Healthcare professionals can direct patients to take 1 or 2 tablets, capsules, or other dosage units of a prescription product containing 325 mg of acetaminophen up to 6 times daily (12 dosage units) and still not exceed the maximum daily dose of acetaminophen (ie, 4000 mg/day)

            Contraindications

            Hypersensitivity

            Significant respiratory depression

            Acute or severe bronchial asthma in an unmonitored setting or in the absence of resuscitative equipment

            Known or suspected gastrointestinal obstruction, including paralytic ileus

            Known hypersensitivity (e.g., anaphylactic reactions, serious skin reactions) to hydrocodone, ibuprofen, or any components of the drug product

            Patients known to be hypersensitive to other opioids may exhibit cross-sensitivity

            Cautions

            Do not prescribe for acute pain or as needed (prn) pain relief; only for severe chronic pain requiring continuous, around-the-clock opioid analgesia

            Hydrocodone is an opioid agonist and a Schedule II controlled substance with a high potential for abuse similar to fentanyl, methadone, morphine, oxycodone, and oxymorphone

            Coadministration with other CNS depressants may cause profound sedation, respiratory depression, and death; if coadministration is required, consider dose reduction of 1 or both drugs

            Monitor carefully in elderly, cachectic, debilitated patients, and those with chronic pulmonary disease because of increased risk for life-threatening respiratory depression

            Monitor patients with head injury or increased ICP for sedation and respiratory depression; avoid use in patients with impaired consciousness or coma susceptible to intracranial effects of CO2 retention

            May cause severe hypotension, including orthostatic hypotension and syncope; added risk to individuals whose ability to maintain blood pressure has been compromised by a depleted blood volume, or after concurrent administration with drugs such as phenothiazines or other agents which compromise vasomotor tone

            Coadministration with CYP3A4 inhibitors may increase hydrocodone systemic exposure and result in toxicity; if co-administration with CYP3A4 necessary, monitor patients closely who are currently taking, or discontinuing, CYP3A4 inhibitors or inducers; evaluate these patients at frequent intervals and consider dose adjustments until stable drug effects are achieved

            Caution must be used with potentially hazardous activities

            Avoid use of mixed agonist/antagonist analgesics (ie, pentazocine, nalbuphine, butorphanol) when taking full opioid agonist analgesics

            Profound sedation, respiratory depression, coma, and death may result from concomitant administration with benzodiazepines or other CNS depressants (e.g., non-benzodiazepine sedatives/hypnotics, anxiolytics, tranquilizers, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol); because of these risks, reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate

            Cases of adrenal insufficiency reported with opioid use, more often following greater than one month of use; symptoms may include nausea, vomiting, anorexia, fatigue, weakness, dizziness, and low blood pressure; if adrenal insufficiency is diagnosed, treat with physiologic replacement doses of corticosteroids; wean patient off of opioid to allow adrenal function to recover and continue corticosteroid treatment until adrenal function recovers; other opioids may be tried as some cases reported use of a different opioid without recurrence of adrenal insufficiency

            May cause spasm of sphincter of Oddi; opioids may cause increases in serum amylase; monitor patients with biliary tract disease, including acute pancreatitis, for worsening symptoms

            Cases of serotonin syndrome, a potentially life-threatening condition, reported with concomitant use of serotonergic drugs; this may occur within the recommended dosage range; the onset of symptoms generally occur within several hours to a few days of concomitant use, but may occur later than that; discontinue therapy immediately if serotonin syndrome is suspected

            Use caution in debilitated patients, drug abuse history, elderly patients, G6PD deficiency, head injury, hepatic dysfunction, hypothyroidism, impaired pulmonary function, increased intracranial pressure, toxic psychosis, renal dysfunction

            Hydrocodone may obscure diagnosis or clinical symptoms of acute abdominal conditions

            Acetaminophen associated with cases of acute liver failure, at times resulting in liver transplantation or death; risk increases in individuals with underlying liver disease, alcohol ingestion, and/or use of more than 1 acetaminophen-containing product (see Black Box Warnings)

            Acetaminophen associated with rare, but serious skin reactions that can be fatal; these reactions include Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN), and acute generalized exanthematous pustulosis (AGEP); symptoms may include skin redness, blisters and rash

            Caution and awareness are necessary regarding misuse, abuse, or diversion

            Constipation may occur; take measures to prevent constipation, such as, administering stool softener and increasing fiber

            Chronic alcoholics should limit acetaminophen intake to <2 g/day

            Use caution in morbidly obese patients

            Use hydrocodone with caution in patients with prostatic hyperplasia and/or urinary stricture

            Use caution in patients with seizure disorders

            Patient access to naloxone for emergency treatment of opioid overdose

            • Assess potential need for naloxone; consider prescribing for emergency treatment of opioid overdose
            • Consult on availability and ways to obtain naloxone as permitted by individual state naloxone dispensing and prescribing requirements or guidelines
            • Educate patients regarding the signs and symptoms of respiratory depression and to call 911 or seek immediate emergency medical help in the event of a known or suspected overdose
            Previous
            Next:

            Pregnancy & Lactation

            Pregnancy

            Prolonged use of opioid analgesics during pregnancy can cause neonatal opioid withdrawal syndrome; there are no available data in pregnant women to inform a drug associated risk for major birth defects and miscarriage; published studies with morphine use during pregnancy have not reported a clear association with opioids and major birth defects

            Prolonged use of opioid analgesics during pregnancy for medical or nonmedical purposes can result in physical dependence in the neonate and neonatal opioid withdrawal syndrome shortly after birth; the onset, duration, and severity of neonatal opioid withdrawal syndrome vary based on specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination of drug by newborn; observe newborns for symptoms of neonatal opioid withdrawal syndrome and manage accordingly

            Lactation

            Drug is present in breast milk; published lactation studies report variable concentrations of drug in breast milk with administration of immediate-release formulation to nursing mothers in early postpartum period

            The developmental and health benefits of breastfeeding should be considered along with mother’s clinical need for therapy; capsules and any potential adverse effects on breastfed infant from therapy or from underlying maternal condition

            Monitor infants exposed to drug through breast milk for excess sedation and respiratory depression; withdrawal symptoms can occur in breastfed infants when maternal administration of an opioid analgesic is stopped, or when breast- feeding is stopped

            Pregnancy Categories

            A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.

            B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk.

            C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done.

            D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk.

            X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist.

            NA: Information not available.

            Previous
            Next:

            Pharmacology

            Mechanism of Action

            Acetaminophen: Acts on the hypothalamus to produce antipyresis; inhibits prostaglandin synthetase

            Hydrocodone: Opioid analgesic agonist; blocks pain perception in the cerebral cortex; decreases synaptic chemical transmission throughout the CNS, which in turn inhibits pain sensation into higher centers

            Metabolism

            Acetaminophen: Primarily undergoes glucuronidation and sulfate conjugation; however, a small percentage is metabolized via CYP2E1 and CYP1A2 to a hepatotoxic metabolite

            Hydrocodone: Metabolized in the liver to the active opioid hydromorphone via CYP2D6; also by O-demethylation, N-demethylation, and 6 ketosteroid reduction

            CYP2D6 poor metabolizers may not achieve adequate analgesia

            Ultrarapid metabolizers (up to 7% of whites and up to 30% of Asian and African populations) may have increased toxicity due to rapid conversion

            Metabolites (acetaminophen): N-acetyl-p-benzoquinoneimine, N-acetylimidoquinone, NAPQI; further metabolized via conjugation with glutathione

            Elimination

            Half-life

            • Hydrocodone: 3.3-4.4 hr
            • Acetaminophen: 2-4 hr

            Onset of action

            • Hydrocodone: 10-20 min (analgesic effects)
            • Acetaminophen: <1 hr (PO); 5-10 min (IV; analgesia)

            Duration

            • Hydrocodone: 4-8 hr
            • Acetaminophen: 4-6 hr (analgesia); > 6hr (antipyretic)

            Excretion

            • Hydrocodone: Urine (26% of single dose)
            • Acetaminophen: Urine (90-100%; principally as acetaminophen glucuronide with acetaminophen sulfate/mercaptate)
            Previous
            Next:

            Images

            No images available for this drug.
            Previous
            Next:

            Patient Handout

            A Patient Handout is not currently available for this monograph.
            Previous
            Next:

            Formulary

            FormularyPatient Discounts

            Adding plans allows you to compare formulary status to other drugs in the same class.

            To view formulary information first create a list of plans. Your list will be saved and can be edited at any time.

            Adding plans allows you to:

            • View the formulary and any restrictions for each plan.
            • Manage and view all your plans together – even plans in different states.
            • Compare formulary status to other drugs in the same class.
            • Access your plan list on any device – mobile or desktop.

            The above information is provided for general informational and educational purposes only. Individual plans may vary and formulary information changes. Contact the applicable plan provider for the most current information.

            Tier Description
            1 This drug is available at the lowest co-pay. Most commonly, these are generic drugs.
            2 This drug is available at a middle level co-pay. Most commonly, these are "preferred" (on formulary) brand drugs.
            3 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs.
            4 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
            5 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
            6 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
            NC NOT COVERED – Drugs that are not covered by the plan.
            Code Definition
            PA Prior Authorization
            Drugs that require prior authorization. This restriction requires that specific clinical criteria be met prior to the approval of the prescription.
            QL Quantity Limits
            Drugs that have quantity limits associated with each prescription. This restriction typically limits the quantity of the drug that will be covered.
            ST Step Therapy
            Drugs that have step therapy associated with each prescription. This restriction typically requires that certain criteria be met prior to approval for the prescription.
            OR Other Restrictions
            Drugs that have restrictions other than prior authorization, quantity limits, and step therapy associated with each prescription.
            Additional Offers
            Email to Patient

            From:

            To:

            The recipient will receive more details and instructions to access this offer.

            By clicking send, you acknowledge that you have permission to email the recipient with this information.

            Email Forms to Patient

            From:

            To:

            The recipient will receive more details and instructions to access this offer.

            By clicking send, you acknowledge that you have permission to email the recipient with this information.

            Previous
            Medscape prescription drug monographs are based on FDA-approved labeling information, unless otherwise noted, combined with additional data derived from primary medical literature.